An inherent-optical-property-centered approach to correct the angular effects in water-leaving radiance.
نویسندگان
چکیده
Remote-sensing reflectance (R(rs)), which is defined as the ratio of water-leaving radiance (L(w)) to downwelling irradiance just above the surface (E(d)(0⁺)), varies with both water constituents (including bottom properties of optically-shallow waters) and angular geometry. L(w) is commonly measured in the field or by satellite sensors at convenient angles, while E(d)(0⁺) can be measured in the field or estimated based on atmospheric properties. To isolate the variations of R(rs) (or L(w)) resulting from a change of water constituents, the angular effects of R(rs) (or L(w)) need to be removed. This is also a necessity for the calibration and validation of satellite ocean color measurements. To reach this objective, for optically-deep waters where bottom contribution is negligible, we present a system centered on water's inherent optical properties (IOPs). It can be used to derive IOPs from angular Rrs and offers an alternative to the system centered on the concentration of chlorophyll. This system is applicable to oceanic and coastal waters as well as to multiband and hyperspectral sensors. This IOP-centered system is applied to both numerically simulated data and in situ measurements to test and evaluate its performance. The good results obtained suggest that the system can be applied to angular R(rs) to retrieve IOPs and to remove the angular variation of R(rs).
منابع مشابه
Predicting Upwelling Radiance on the West Florida Shelf
The prediction of inherent optical properties [IOPs] and water-leaving radiance [Lw] in coastal waters over a 5 to 10 day time horizon will require a numerical simulation that accurately forecasts the physical, ecological, and optical environment. Critical to the ecological and optical forecast is the ability to directly compare the water-leaving radiance field to those being collected by aircr...
متن کاملRadiance detection of non-scattering inclusions in turbid media
Detection of non-scattering domains (voids) is an area of active research in biomedical optics. To avoid complexities of image reconstruction algorithms and requirements of a priori knowledge of void locations inherent to diffuse optical tomography (DOT), it would be useful to establish specific experimental signatures of voids that would help identify and detect them by other means. To address...
متن کامل4 An Introduction to FY - 3 / MERSI , Ocean Colour Algorithm , Product and Application
Ocean colour is the water-leaving radiance in the visible and near-infrared just above the ocean surface owing to selective absorption and scattering by phytoplankton and its pigments such as chlorophyll, as well as dissolved organic matter and suspended particulate matter in the subsurface ocean waters. Ocean colour carries useful information concerning biogeochemical properties of the water b...
متن کاملTheory of equidistant three-dimensional radiance measurements with optical microprobes.
Fiber-optic radiance microprobes, increasingly applied for measurements of internal light fields in living tissues, provide three-dimensional radiance distribution solids and radiant energy fluence rates at different depths of turbid samples. These data are, however, distorted because of an inherent feature of optical fibers: nonuniform angular sensitivity. Because of this property a radiance m...
متن کاملEffects of optically shallow bottoms on upwelling radiances: Bidirectional reflectance distribution function effects
Radiative transfer simulations were carried out for a variety of measured and modeled benthic bidirectional reflectance distribution functions (BRDFs), incident lighting conditions, bottom depths, and water inherent optical properties. These simulations quantify the errors that occur in predictions of above-surface remote-sensing reflectances and in-water upwelling radiances if non-Lambertian o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied optics
دوره 50 19 شماره
صفحات -
تاریخ انتشار 2011